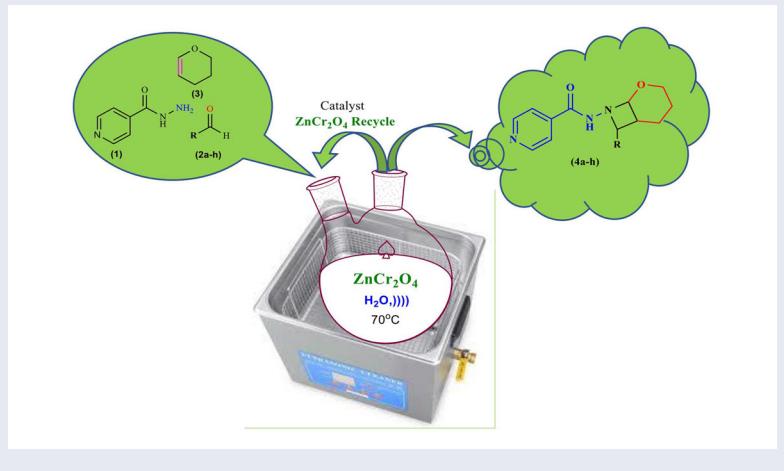


Reusable ZnCr_2O_4 Nano Catalyzed One Pot Three-Component Cycloaddition Reaction for Synthesis of Azetidine Derivatives under Ultrasound Irradiation

Sachin Bangale^a, Valmik Jondhale^b, Dattatraya Pansare^c , and Pravin Chavan^d

^aDepartment of Chemistry, G. M. Vedak College, Tala-Raigad, Maharashtra, India; ^bDepartment of Chemistry, ASC College, Shrivardhan, Raigad, Maharashtra, India; ^cDepartment of Chemistry, Deogiri College, Aurangabad, Maharashtra, India; ^dDepartment of Chemistry, Doshi Vakil College, Goregaon-Raigad, Maharashtra, India

ABSTRACT


A versatile and effectual, three-component one pot ($2\pi + 2\pi$) cycloaddition reaction to the synthesis of substituted azetidines in the excellent yields is described. The reaction of isonicotinic acid hydrazide (**1**) as starting materials. Design and preparation of N-(7-R)-2-oxa-8-azabicyclo[4.2.0]octan-8-yl)isonicotinamide derivatives (**4a-h**) was carried out by condensation of isoniazid (**1**) with aromatic aldehyde (**2a-h**), ZnCr_2O_4 nano catalyzed one-pot cycloaddition of isoniazid Schiff base with pyran (**3**) under ultrasonic irradiation. Moreover, the Prepared ZnCr_2O_4 nanoparticles were easily recovered by corresponding solvent and reused for next synthesis of derivatives without significant loss of their catalytic activity. Prepared ZnCr_2O_4 nanoparticles were confirmed by XRD, EDX, TEM, HRTEM, TGA-DTA and all substituted azetidines were characterized by ^1H NMR, ^{13}C NMR, FT-IR, mass and elemental analysis.

ARTICLE HISTORY

Received 15 May 2021
Accepted 13 September 2021

KEYWORDS

ZnCr_2O_4 ; three-component one-pot reaction; azetidine derivatives; aromatic aldehydes; ultrasound irradiation

